

G4 Series

PILOT OPERATED PRESSURE REDUCING VALVES

... Extremely sensitive and accurate

The 'G4' pressure reducing valve is designed for use on steam, air and gases. It will maintain a constant outlet pressure irrespective of variations in the inlet pressure or demand from the system.

Initially with no compression on the adjusting screw, both the pilot and main valve seats are closed due to the action of the springs in the pilot and main valve. Fluid at the inlet pressure passes up the inlet relay port to the pilot valve seat which is opened by clockwise (viewed from above) rotation of the adjusting screw. This compresses the adjusting spring and applies load to the topside of the diaphragm, pushing open the pilot valve. Fluid now passes through the pilot valve seat, through the relay port to the top of the large diameter piston, which in turn pushes the main valve open.

The pressure of the fluid is reduced as it passes through the open main valve from the inlet to the valve outlet. At the same time fluid passes up the outlet relay port to the underside of the diaphragm, from where the outlet pressure is controlled.

The outlet pressure is a result of the balancing of the forces acting on the diaphragm, from the adjusting spring above and the reduced pressure from below.

The 'G4' is extremely sensitive and accurate, due to the large diaphragm. Inlet variations, or demand from the system, will attempt to affect the outlet pressure. Such attempts will result in movement of the pilot valve, which in turn minutely moves the piston and main valve. Thus the outlet pressure is maintained and the controlling cycle starts again.

PRESSURE EQUIPMENT DIRECTIVE (PED)

The G4 pressure reducing valve is fully compliant/certified to the PED as follows:

Sizes DN15 to DN25 in accordance with article 3, paragraph 3 (sound engineering practice) hence do not require the CE mark.

Sizes DN32 to DN100 to Category II, group 1 gases (CE marked)

Sizes DN32 to DN150 to Category II, group 2 gases (CE marked)

REMOTE PRESSURE SENSING

For Steam Applications

The 'G4' is a self-actuated, pilot operated pressure reducing valve and it relies upon a stable pressure signal from the outlet pipe work in order to maintain stable control of the outlet pressure.

However, under certain conditions the signal pressure may be unstable in the immediate vicinity of the valve outlet and as a result may cause erratic control.

This can easily be overcome by installing a balance pipe from the remote sensing port to a straight section of the outlet pipe where stable flow has been resumed (see diagram below).

Ideally the balance pipe should be a minimum of 2 metres (6 feet) long and must be screwed into the remote sensing port to the required depth, see page 38. It should also include a pipe union and stop valve to allow dismantling and isolation. It should be installed with a steady fall away from the reducing valve, to facilitate self drainage of condensate.

We recommend fitting a balance pipe:

- 1. When the reduced pressure is below 55% of the inlet pressure.
- 2. When a low pressure top is fitted.
- 3. When difficult outlet pipe work conditions occur.

We do not recommend fitting a balance pipe on air/gas applications. To ensure correct operation the G4 should be mounted at least 10 pipe diameters from restrictions such as other valves or bends.

LOW PRESSURE TOP

The standard 'G4' pilot top can reduce pressures down to 0.35 Barg (5 Psig). For pressures below this, a bronze low pressure pilot top can be fitted in place of the standard top. It is suitable for outlet pressures from 0.07 to 0.35 Barg (1 to 5 Psig) using the yellow spring. The low pressure top is available for fitting on to valve sizes 15 to 100mm ($\frac{1}{2}$ to 4 inch), and a balance line should always be fitted to a low pressure top, on steam duty and never on air/gas duty.

Note: A low pressure top is only suitable for inlet pressure up to a maximum of 7 Barg (100 Psig). Higher inlet pressures can be accommodated by use of two G4 valves 'in-series', refer to page 37.

The low pressure top can also be supplied as a **conversion kit**, allowing existing valves and stock to be modified quickly should the need suddenly arise.

GAS AND OXYGEN DUTIES

The 'G4' has successfully been used for many years with metal seats on demanding steam applications. However soft seated versions are available for industrial fine gas applications, involving such gases as carbon dioxide, nitrogen and oxygen. Typical application areas would include pharmaceuticals, food processing and brewing.

The 'G4' utilises a range of soft elastomer seat materials to meet the ever growing demand for these specialist applications.

In addition, valves for active gases, such as oxygen and methane, can be supplied fully assembled and tested to "oxygen service" standard in Bailey's state of the art clean room facility. This facility complies fully with the "Industrial Gas Committee" guidelines.

All soft seat options can also be supplied as **conversion kits**, allowing existing valves and stock to be modified quickly should the need suddenly arise.

We do not recommend fitting a balance pipe on gas applications. To ensure correct operation the G4 should be mounted at least 10 pipe diameters from restrictions such as other valves or bends.

1 2† 3† 4 5 6*† 7 8 17*† 21† 24*† 25 26† 27† 28*† 29*† 30 31† 32 33 34 35 36 37 38 42*† 43*† 44 48† 49 50 51	Body Main Valve Main Valve Seat Bottom Plug Piston Piston Rings Piston Liner Piston Guide Valve Body Top Joint Main Valve Spring Bottom Plug Joint Pilot Valve Top Pilot Valve Top Pilot Valve Plug Pilot Valve Cap Diaphragm H.P. Port Plug Pilot Valve Spring Pilot Valve Spring Pilot Valve Spring Pilot Valve Spring Pilot Valve Top Cover Adjusting Spring Bottom Plate Adjusting Spring Top Plate Adjusting Spring Top Plate Adjusting Screw Locking Ring Padlock Diaphragm Joint H.P. Port Plug Joint Cap Headed Screws Pilot Valve Head L.P. Diaphragm L.P. Screw Joint L.P. Adaptor Flange
51	L.P. Adaptor Flange
52	L.P. Top Cover
53 54	L.P. PUSH ROO L.P. Ton Cover Bolts
55	L.P. Top Cover Nuts
61	Тор Сар
68*†	Pilot Valve Plug Joint
69	Remote Control Plug
/0*†	Remote Control Plug Joint

Note: A variety of elastomeric or PTFE seats and gaskets are available to suit various applications. *Routine service pack; available from Safety Systems UK Ltd.

†Complete repair pack; available from Safety Systems UK Ltd. Recommended inspection every 12 months.

Systems

ITEM	2042 & 2043	2044	2045	2046
	Bronze	Carbon Steel	Carbon Steel	Carbon Steel
1	Bronze	Carbon Steel	Carbon Steel	Carbon Steel
2	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel
3	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel
4	Bronze	Bronze	Stainless Steel	Stainless Steel
5	Bronze	Bronze	Bronze	Stainless Steel
6	Bronze	Bronze	Bronze	Chrome Iron
7	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel
8	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel
17	NAF	NAF	NAF	NAF
21	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel
24	NAF	NAF	NAF	NAF
25	Bronze	Bronze	Bronze	Steel
26	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel
27	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel
28	Brass	Brass	Brass	Brass
29	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel
30	Bronze	Bronze	Bronze	Carbon Steel
31	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel
32	Bronze	Bronze	Bronze	Carbon Steel
33	Steel	Steel	Steel	Steel
34	Brass	Brass	Brass	Brass
35	Brass	Brass	Brass	Brass
36	Bronze	Bronze	Bronze	Bronze
37	Bronze	Bronze	Bronze	Bronze
38	Brass	Brass	Brass	Brass
42	NAF	NAF	NAF	NAF
43	NAF	NAF	NAF	NAF
44	Steel	Stainless Steel	Stainless Steel	Stainless Steel
48	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel
49	Bronze	Bronze	Bronze	N/A
50	Copper	Copper	Copper	N/A
51	Bronze	Bronze	Bronze	N/A
52	Bronze	N/A	N/A	N/A
53	Monel	Monel	Monel	N/A
54	Steel	Steel	Steel	N/A
55	Steel	Steel	Steel	N/A
61	Nylon	Nylon	Nylon	Nylon
68	Copper	Copper	Copper	Copper
69	Brass	Bronze	Bronze	Carbon Steel
70	NAF	NAF	NAF	NAF

Safety Systems

TECHNICAL SPECIFICATION - G4 reducing valves

	Size			MATERIALS		PRESSU	IRE Barg	TEMP.	
Figure	Range	0	Dealer	Pilot	Valve	Inlet	Outlet	Deg.C	
Number	mm	Connections	воау	Гор	Irim	IVIIn-IVIAX	iviin-iviax	IVIIn-IVIAX	
2042	15–50	Screwed	Bronze	Bronze	St Steel	0.7–35§	0.07–21	–20 to +260	Ē
† 2042GN	15–50	Screwed	Bronze	Bronze	Nitrile	0.7–31	0.07–21	-20 to +100	MOL
† 2042GV	15–50	Screwed	Bronze	Bronze	Viton	0.7–31	0.07–21	–18 to +150	as st
†2042GP	15–50	Screwed	Bronze	Bronze	PTFE	0.7–35	0.07–21	–20 to +170	e th ply a
2043	15–50	Flanged	Bronze	Bronze	St Steel	0.7–35§	0.07–21	–20 to +260	le ar s ap
†2043GN	15–50	Flanged	Bronze	Bronze	Nitrile	0.7–31	0.07–21	–20 to +100	tion
†2043GV	15–50	Flanged	Bronze	Bronze	Viton	0.7–31	0.07–21	–18 to +150	this
†2043GP	15–50	Flanged	Bronze	Bronze	PTFE	0.7–35	0.07–21	–20 to +170	is in , ree
2044	65–150*	Flanged	Carbon St.	Bronze	St Steel	0.7–16π§	0.07–15π§	-20 to +220	ture own
2044GP	65–150*	Flanged	Carbon St.	Bronze	PTFE	1.0–16	0.07–15π	–20 to +170	pera el sh
2045	65–150*	Flanged	Carbon St.	Bronze	St Steel	0.7–35π§	0.35–21π§	–20 to +260	tem
2045GP	65–150*	Flanged	Carbon St.	Bronze	PTFE	1.0–35	0.07–21§	–20 to +170	and ne n
2046	15–100	Flanged	Carbon St.	Carbon St.	St Steel	0.7–42π§	0.35–21π§	-20 to +400	res a
#2046GN	15–50	Flanged	Carbon St.	Carbon St.	Nitrile	0.7–31	0.35–21	–20 to +100	im fi
#2046GV	15–50	Flanged	Carbon St.	Carbon St.	Viton	0.7–31	0.35–21	–18 to +150	e pre Ximu
#2046GP	15–100	Flanged	Carbon St.	Carbon St.	PTFE	1.0-42	0.35–21π	-20 to +170	Th€ ma) belo

Note: When outlet pressure is less than 0.35 Barg a low pressure top will be fitted.

 $\dagger~$ 'G' for gas duty can be replaced by 'O' for oxygen duty.

 $\ddagger\,$ When a stainless steel spring is fitted the maximum outlet pressure is 10.5 Barg.

15/20/25mm are all fitted into the 25mm body (1" flanges). 32/40/50mm are all fitted into the 50mm body (2" flanges).

 $\pi\,$ Air service restrictions see below.

§ Steam service restrictions see below.
* A 150mm body can be offered with a restricted main valve to give a 125mm size flow rate.

§ - Steam	n Service Restr	ictions
Figure	Restriction	
Number	on:	Restriction
2042	Inlet	25 Barg to 225°C/17 Barg to 260°C
2043	Inlet	25 Barg to 225°C/17 Barg to 260°C
2044	Inlet	13 Barg Max
2044	Outlet	12 Barg Max
2045	Inlet	65-150mm 25 Barg to 225°C/17 Barg to 260°C
2045	Outlet	65-100mm 21 Barg to 225°C/16 Barg to 260°C
2045	Outlet	125-150mm 12 Barg Max
2046	Inlet	42 Barg to 280°C/32 Barg to 400°C
2046	Outlet	125-100mm 12 Barg Max

π - Air Se	ervice Restrictions	
Figure	Restriction	
Number	on:	Restriction
2044	Inlet	16 Barg to 120°C/13 Barg to 220°C
2044	Outlet	65-100mm 15 Barg to 120°C/12 Barg to 220°C
2044	Outlet	125-150mm 12 Barg
2045	Inlet	65-150mm 35 Barg to 170°C/17 Barg to 260°C
2045	Outlet	65-100mm 21 Barg to 170°C/16 Barg to 260°C
2045	Outlet	125-150mm 12 Barg Max
2046	Inlet	42 Barg to 280°C/32 Barg to 400°C
2046	Outlet	125-100mm 12 Barg

Systems

DIMENSIONS

Screwed

Flanged

Weight DIN 8 203 15mm 1/2" BSP 4.125 105 _ 2.375 60 6 20mm 3/4" BSP 4.125 105 _ 8.25 210 2.5 64 6.8 Fig 2042 25mm 1" BSP 4.5 114 8.375 213 2.625 67 7 _ Screwed 32mm 11/4" BSP 4.875 124 9.625 244 3 76 10.8 Bronze _ 11/2" BSP 5.25 9.875 251 3.125 79 12.7 40mm 133 _ 2" BSP 50mm 6.375 162 _ 10.25 260 3.25 83 15.4 15mm 1/2" 5.5 140 130* 8 203 2.375 60 8 20mm ³/4" 5.625 143 150* 8.25 210 2.5 8.6 64 Fig 2043 6.75 25mm 1" 171 160* 8.375 213 2.625 9 67 Flanged 32mm 11/4" 7 178 180* 9.625 244 3 76 13.6 Bronze 7.5 79 40mm 11/2" 191 200* 9.875 251 3.125 16.3 2" 3.25 50mm 8.5 216 230* 10.25 260 83 20.8 Fig 2044 65mm 21/2" 10 254 254 11.25 286 5.125 130 38 Flanged 3" 80mm 11.25 286 286 11.25 286 5.75 146 56 Carbon 4" 178 100mm 13.5 343 343 12.75 324 80 7 Steel 125mm 6" 16.5 419 419 16.5 419 9.75 248 174 (Brz. top) 150mm 6" 419 419 419 9.75 248 16.5 16.5 174 Fig 2045 21/2" 10 254 254 11.25 286 5.125 130 38 65mm Flanged 3" 286 286 11.25 5.75 80mm 11.25 286 146 56 Carbon 4" 100mm 13.5 343 343 12.75 324 7 178 80 Steel 6" 419 9.75 248 174 125mm 16.5 419 16.5 419 (Brz. top) 150mm 6" 16.5 419 419 16.5 419 9.75 248 174 1" 6.75 171 230† 8.375 2.75 70 15mm 213 13.5 1" 20mm 6.75 171 230† 8.375 213 2.75 70 13.5 1" 25mm 6.75 171 230† 8.375 213 2.75 70 13.5 Fig 2046 2" Flanged 32mm 9 229 229 10.5 267 3.5 89 26.3 2" 9 Carbon 40mm 229 229 10.5 267 3.5 89 26.3 50mm 2" 9 229 229 10.5 3.5 89 26.3 Steel 267 **21/2**" 10 254 254 286 5.125 130 65mm 11.25 42 (C.S. top) 80mm 3" 11.25 286 286 11.25 286 5.75 146 52 100mm 4" 13.5 343 343 12.75 324 7 178 87

Face to face dimensions are in accordance with

*Din 3300 (PN40) †Din 3300 (PN64)

CONNECTION OPTIONS

API/NPT
ANSI, BS10

**Standard item.

'IN SERIES' INSTALLATIONS

Multiple valves installed 'In Series' should be considered for applications when high pressure drops are required. If the required outlet pressure is less than the minimum shown in the charts two valves can be used.

An 'In Series' installation should be designed to drop the pressure in at least two steps/stages.

'IN PARALLEL' INSTALLATIONS

Multiple valves can be installed as an 'in parallel' system when the system has a very large variation in the required capacity. On such a system one large and one small valve should be installed, with a combined capacity greater than the maximum required demand, the smaller valve having a capacity just greater than the minimum required demand.

Setting the smaller valve slightly higher than the larger valve, will ensure that the larger valve is closed at low flow rates. Increasing demand will then open the larger valve as outlet pressure falls to its set point.

A typical diagram is shown (using close coupled parallel slide isolating valves).

'IN SERIES' INSTALLATION

* Balance lines are only required on some steam applications, they are not required on air/gas applications, see page 38.

INSTALLATION

TYPICAL STEAM REDUCING VALVE INSTALLATION USING GLOBE STOP VALVES

*(Note: if you use parallel slide stop valves, they can be close coupled to the G4.)

The majority of troubles experienced with pressure regulators can be attributed to installation faults. These can be avoided by giving attention to the following points:

Sizing

The correct sizing and layout of regulators, pipework, stop valves, strainers and other fittings is extremely important for good performance.

Inlet Strainer

Dirt, grit and pipe scale are common causes of regulator failure. A strainer of upstream pipe size should be fitted at least 10 pipe diameters before the regulator.

Steam Traps

Steam reducing valve stations should have steam traps fitted on the inlet and outlet pipes, to prevent build up of condensate in the regulator, particularly under no flow conditions.

Safety Valve

Every installation should be fully protected against regulator failure by a safety valve. Care should be taken that the discharge from such a valve cannot cause damage to property or create a hazard to personnel. The safety valve should be sized to pass the maximum capacity of the regulator.

Pipe work

All pipework and fittings should be properly supported and free from any strain or vibrations which could affect their correct operation. All flanges should be correctly aligned and joints carefully fitted to avoid blockage of valve ports.

If a jointing compound is used it should not be allowed to foul the internal ports or working parts of the valve.

Balance Pipe (Steam applications only)

A balance pipe should be fitted when the reduced pressure is 55% or less of the inlet pressure, or to help counteract difficult turbulent downstream conditions caused by pipe fittings, valves or bends. The method of connecting the balance pipe to the reducing valve is shown in the sketch. It should drain downwards and be connected into the side of the downstream pipe at a point where smooth flow occurs (preferably downstream of the safety valve). Where isolation of the regulator is desired, a stop valve should be fitted in the balance line.

'A' dimension must be " $\frac{15}{16}$ " \pm $\frac{1}{16}$ " on all stainless steel valves or CS Fig 2046. All other valves with bronze pilot tops, the pipe should penetrate 1" minimum.

Before putting a regulator into service

Prior to installing the valve all pipes should be thoroughly blown-through to remove any dirt, grit or pipe scale. Additional cleaning can be done by removing the regulator bottom plug, main valve and spring, and then carefully opening the inlet stop valve by a small amount. Remove any dirt lodged in the valve body and replace all parts.

SETTING

Setting under no flow conditions

This is the more accurate method and may be carried out as follows:

- 1. Any condensate remaining in the pipeline should be removed by first applying a little tension to the regulator adjusting spring (by rotating the adjusting screw clockwise for a few turns) and then slowly opening the outlet and inlet stop valves. When the downstream pressure starts to rise, close the inlet stop valve and remove all tension from the regulator adjusting spring.
- 2. Close the outlet stop valve and slowly open the inlet stop valve. Wait for about one minute to confirm that the reduced pressure is maintained at zero. This is a check that the regulator gives 'dead-tight' shut-off under no flow conditions.
- 3. Slowly raise the reduced pressure (by rotating the regulator adjusting screw clockwise) until the desired pressure is obtained. (Do not forget to set the safety valve 15% above the reduced pressure, if necessary.) The valve is now correctly set and the adjusting screw should be locked with the lock-nut provided.
- 4. Slowly bring the outlet stop valve to 'full open' and apart from a possible initial 'fall back' of the reduced pressure (whilst the systems is warmed through) the regulator should continue to maintain the reduced pressure.

Setting On Flow

With the inlet and outlet stop valves closed, apply a little tension to the regulator adjusting spring (by rotating the adjusting screw clockwise for a few turns). Open the inlet and all downstream stop valves and then wait until all condensate has been removed and the system properly warmed through. Then slowly raise the reduced pressure by clockwise rotation of the adjusting screw until the desired reduced pressure is obtained. (Do not forget to set the Safety Valve, if necessary.) If the flow is varying,

some trial and error may be necessary before the correct setting is finally achieved. The reduced pressure under no-flow conditions should be checked as soon as convenient.

We strongly recommend that the inlet strainer and reducing valve should be cleaned out one week after commissioning, and the strainer and steam traps checked at regular intervals thereafter.

Outlet Pressure Regulation

Up to 80mm (3") size $\pm \frac{1}{2}$ % of outlet pressure [\pm 0.035 Barg ($\frac{1}{2}$ Psig) below 6.9 Barg (100 Psig)]

Above 80mm (3") size \pm 1% of outlet pressure [\pm 0.07 Barg (1 Psig) below 6.9 Barg (100 Psig)]

Pressure rise at dead end (steam only) = 1%.

SPRING SELECTION

If possible it is advisable to select a spring which has at least 10% additional adjustment above the required set pressure. As can be seen from the chart, the springs have overlapping ranges. Where possible the spring with the lowest range should be selected.

15-100mm (½" - 4") VALVES					
Barg	(Psig)	Colour Code			
0.07-3.5	(1-50)	Yellow			
0.7-7.0	(10-100)	Black			
2.8-10.5	(40-150)	White			
3.5-14.0	(50-200)	Green			
7.0-21.0	(100-300)	Red			
150mm (6")* VALVES					

Barg	(Psig)	Colour Code
0.35-1.4	(5-20)	Red
0.7-3.5	(10-50)	Yellow
2.8-7.0	(40-100)	Black
3.5-12.0	(50-175)	Green

*A 150mm body can be offered with a restricted main valve to give a 125mm size flow rate.

SIZING

The G4 Pressure Regulator can give its best performance when correctly sized to match the maximum demand of the system. It is therefore important that the size of regulator is decided from the known or estimated consumption and never fitted just as a line size valve. It is useful to remember that the G4 is a full lift, high capacity valve and correctly sized will almost invariably be smaller than the size of the pipe work.

The valve sizing charts illustrate that the maximum capacity occurs when the outlet pressure is less than 55% of the inlet pressure (critical pressure drop sizing). When the outlet pressure is above 55% sub critical flow occurs and the capacity will be reduced.

Critical pressure drop sizing is only true when both the inlet and outlet pipework is sized correctly in accordance with our pipe sizing charts (see page 70).

It is important to remember that the outlet pipe is invariably larger than the inlet pipe, in order to pass the same quantity of steam, air or gas at a lower pressure.

Note Undersized pipe work and fittings cause unnecessary and uncontrolled pressure losses and are a major cause of unstable control.

Capacity Variations

The sizing charts give the maximum capacities which can be handled by the regulator for the given inlet and outlet pressures.

For trouble free operation the minimum flow rate should be considered to be 10% of the maximum.

Steam

If no steam capacity is given, size the regulator based on the maximum flow which can be achieved through the inlet pipe, according to our pipe sizing charts.

Alternatively, if the maximum heat requirement of the system is known, the following approximate relationship can be used.

Steam Capacity:

 $Kg/h = Kcals \div 554$ $kg/h = kW \times 0.6446$ $lbs/h = B.T.U's/h \div 1000$

Superheated Steam

If the steam temperature is greater than the saturated steam temperature, the capacities shown in our tables will need to be reduced.

DEGREES OF SUPERHEAT						
°C	°F	Factor				
0 to 10	0 to 50	multiply by 0.96				
10 to 50	50 to 100	multiply by 0.92				
50 to 75	100 to 150	multiply by 0.89				
75 to 100	150 to 200	multiply by 0.86				
100 to 150	200 to 300	multiply by 0.82				

Air and Gases

For gases other than air, divide the chart air capacity by \sqrt{SG} (SG of Air = 1) to give the equivalent gas capacity.

Other Temperatures

The air/gas capacity tables are based on air at 15°C. If the actual flowing temperature is different, the chart capacity will need to be divided by $\sqrt{(T/288)}$

Where: T= flowing temperature $^{\circ}C + 273^{\circ}k$.

SIZING EXAMPLE

Requirement

Fluid - Steam @ 184°C Inlet Pressure - 10 Barg Outlet Pressure - 5.5 Barg Required Capacity - 1100 kg/h

Sizing

Refer to the sizing chart on page 17. At an inlet pressure of 10 Barg and at an outlet pressure of 5.5 Barg.

The first value to pass more than 1100 kg/h is the $32mm (1\frac{1}{4})$, which will pass 1489kg/h.

Selection

Refer to page 29 and page 35.

We can choose between figures 2042, 2043 or 2046. The choice will then depend on the customer's requirements on connections and materials. The most economical choice would be the 2042 screwed bronze valve.

At 5.5 Barg a standard top is acceptable (ref. page 32), only one diaphragm is required (see opposite) and the black spring (ref. page 81) should be fitted with a range of 0.7 to 7.0 Barg.

Inlet Pipe Size

Refer to page 70, at 10 Barg the smallest pipe to pass our required flow of 1100kg/h is 50mm (2").

Outlet Pipe Size

Refer to page 70, at 5.5 Barg the smallest pipe to pass our required flow of 1100kg/h is 65mm (2 $\frac{1}{2}$ ").

SPARES

Routine Service Pack:

- 1 Diaphragm
- 1 Set of Piston Rings
- 1 Pilot Valve Cap
- 1 Set of Joints

Complete Repair kit:

- 1 Diaphragm
- 1 Set of Piston Rings
- 1 Pilot Valve Assembly
- 1 Main Valve
- 1 Main Valve Seat
- 1 Main Valve Spring 1 Set of Joints
- 1 Pilot Valve Cap

Each carton of spares contains a leaflet, which not only identifies the parts supplied, but also has a recommended list of 'check-points' to help identify common causes of reducing valve trouble.

DIAPHRAGMS

One diaphragm is required for reduced pressures up to 10.5 Barg (150 Psig), but two are required for reduced pressure above this figure.

SURPLUS/MAINTAINING VALVES

The 'G4 surplus' valve can also be described as a 'pressure maintaining' or 'pressure sustaining' valve.

In these days of high energy costs and environment emission controls, steam and air systems can be very expensive to install and run. Often most industrial applications need steam or air for the main process plant and it is critical to maintain the supply to these processes. Additionally, such plants will also have other demands of a less critical nature such as compressed air lines, heating and cleaning systems.

Obviously two separate systems could be employed, providing that the necessary funds are available to install and run both. Alternatively the secondary and less critical applications can be run from the surplus generated from the main system. However, during periods of extreme demand the main process could be starved of steam or air, resulting in production disruption and product loss. (See figure 1).

The solution is to fit a 'G4 surplus' valve.

The 'G4 surplus' valve is designed to be installed in branch lines to non-essential equipment (see figure 1), to maintain the upstream pressure, thus maintaining the supply to the more vital process and subsequently maintaining production from the system. Alternatively to dump flow surplus to requirements, to a drain or atmosphere.

Additionally if the pressure in a boiler or air accumulator is allowed to fall too low, a lot of energy will be required to build up the pressure once again (see figure 2).

The solution is to fit a 'G4 Maintaining' valve.

The 'G4 Maintaining' valve is designed to be installed in the main pipeline from the boiler or an air compressor (see figure 2), to maintain the pressure in the boiler or accumulator, thus preventing the boiler or accumulator from becoming exhausted.

Operation

The inlet pressure is directed under the diaphragm. A small increase in pressure above the set pressure lifts the diaphragm and opens the pilot valve, which in turn opens the main valve. Subsequently when excess demand drops the pressure below the required level, the adjusting spring will overcome the pressure under the diaphragm and close the pilot valve. This in turn causes the main valve to close, thus cutting the surplus supply and/or maintaining pressure in the main line, boiler or accumulator.

This duty and valve type is known by many names. As can be seen in this text the valve 'maintains' or 'sustains' pressure in the main line, boiler or accumulator and can use 'surplus' pressure for nonessential services.

Figure 1

When the G4 surplus valve is closed, the full flow from boiler/compressor goes to the critical process.

Figure 2

When the G4 maintaining valve is closed, the full flow from boiler/compressor is stopped and the minimum pressure of the boiler/accumulator is maintained.

G4 SURPLUS/MAINTAINING VALVE SELECTION

Example 1: Surplus duty (see figure 1, page 42)

A steam boiler normally working at a pressure of 10 Barg, delivers steam to a critical process which must not fall below 8 Barg (closing pressure) in order to preserve correct operation. The excess (surplus) capacity produced can be used for a non-critical service. If this non-critical service requires 3500 Kg/h of saturated steam, what size of G4 surplus valve will be required?

A surplus valve is normally sized on the minimum allowable pressure drop across the valve ie: at an equivalent pressure equal to the maximum outlet setting of the valve. Looking at page 51 and the 10 Barg inlet pressure, the maximum outlet setting is 9 Barg. The required flow is 3500kg/h by 0.48 and it can be seen that the 80mm (3") valve will pass a maximum flow of 3771kg/h.

Example 2: Pressure maintaining duty (see figure 2, page 42).

A steam boiler, normally working at a pressure of 10 Barg, delivers steam to a process. It is determined that the boiler pressure must not fall below 8 Barg. The process normally requires

3500 Kg/h of saturated steam, what size of G4 maintaining valve will be required?

Selecting a pressure maintaining valve is the same as selecting a surplus valve, therefore follow the same sizing procedure.

SURPLUS/MAINTAINING VALVE PERFORMANCE

A small pressure rise (accumulation) above the set point is required to fully open the valve, and a small pressure drop (regulation) below the set pressure is required to close the valve. It is therefore important to set the valve higher than the pressure at which the valve must be closed, to allow for this regulation.

In the above examples the valve must be set at a minimum of 8.15 Barg. This allows for the regulation of 0.15 Barg to ensure the valve is fully closed at 8 Barg. It can also be seen that the valve will be fully open by 8.35 Barg (i.e. 0.2 Barg accumulation above the set point of 8.15 Barg).

Spring selection

If possible, it is advisable to select a spring which has at least 10% adjustment above the required set pressure. As can be seen from the chart, the springs have overlapping ranges and therefore, where possible, the spring with the lowest pressure range should be selected.

In the examples we require a spring for a pressure of 8.15 Barg (ideally plus 10%, say 9 Barg). As can be seen the white, green and red springs can do this pressure, however the white spring should be selected as it has the lower range.

Valve selection

Referring to the charts on page 29 and page 44, it can be seen that the figures 2044 and 2045 are suitable for the given conditions.

Closing	Pressure	Accum	ulation	Regu	lation
Barg	(Psig)	Barg	(Psig)	Barg	(Psig)
0.35 - 3.5	(5 - 50)	0.10	(1.5)	0.04	(0.5)
3.5 - 7.0	(50 - 100)	0.10	(1.5)	0.10	(1.5)
7.0 - 10.3	(100 - 150)	0.20	(3.0)	0.15	(2.0)
10.3 - 20.7	(150 - 300)	0.50	(7.0)	0.70	(10.0)

Spring Colour Code	Spring Pressure Range				
	Barg	(Psig)			
Yellow	0.35 - 3.5	(5 - 50)			
Black	0.7 - 7.0	(10 - 100)			
White	2.8 - 10.3	(40 - 150)			
Green	3.5 - 14.0	(50 - 200)			
Red	7.0 - 20.7	(100 - 300)			

DIAPHRAGMS

For pressures above 10.3 Barg (150 Psig) two diaphragms must be fitted. Below this pressure only one diaphragm is fitted.

TECHNICAL SPECIFICATION - G4 SURPLUS/MAINTAINING VALVES

Figure No.		2042	2043	2044	2045
Size		15 – 50mm (½ – 2ins)	15 – 50mm (½ – 2ins)	65 – 100mm (2½ – 4ins)	65 – 100mm (2½ – 4ins)
Connections		Screwed	Flanged	Flanged	Flanged
Material		Bronze	Bronze	Carbon Steel	Carbon Steel
Max. inlet pressure		20.7 Barg	20.7 Barg	20.7 Barg	20.7 Barg
		(300 Psig)	(300 Psig)	(300 Psig)	(300 Psig)
Min. inlet pressure		0.7 Barg	0.7 Barg	1.03 Barg	1.03 Barg
		(10 Psig)	(10 Psig)	(15 Psig)	(15 Psig)
Temperature range	Min.	Max.	Max.	Max.	Max.
Stainless steel seat	–20°C (–68°F)	260°C (500°F)	260°C (500°F)	220°C (430°F)	260°C (500°F)
Nitrile seat	–20°C (–68°F)	100°C (212°F)	100°C (212°F)	NA	NA
Viton seat	–18°C (–64°F)	150°C (302°F)	150°C (302°F)	NA	NA
PTFE seat	–20°C (–68°F)	170°C (338°F)	170°C (338°F)	170°C (338°F)	170°C (338°F)

G4 DRY SATURATED STEAM CAPACITY - Kg/h See page 41 for a sizing example

Inlet Pressure Barg	Outlet Pressure Barg	R15mm	15mm	20mm	25mm	32mm	40mm	50mm	65mm	80mm	100mm	125mm	150mm
0.70	0.35 0.07*	14.4 14.4	42.5 42.5	86.7 86.7	143 143	215 215	310 310	534 534	NA NA	NA NA	NA NA	NA NA	NA NA
1.00	0.65 0.55 0.32* 0.07*	15.3 16.3 16.3 16.3	46.7 49.5 49.5 49.5	95.3 101 101 101	157 166 166 166	239 254 254 254	346 367 367 367	594 630 630 630	NA NA 1072 1072	NA NA 1337 1337	NA NA 2397 2397	NA NA NA NA	NA NA NA NA
2.00	1.65 1.30 1.10 0.35 0.07*	19.2 22.8 24.8 24.8 24.8 24.8	58.7 69.5 75.5 75.5 75.5	120 141 154 154 154	197 233 254 254 254	300 356 386 386 386	434 514 559 559 559	747 884 960 960 960	NA 1418 1540 1540 1540	NA 1769 1920 1920 1920	NA 3171 3442 3442 3442	NA 4590 4981 4981 NA	NA 6538 7095 7095 NA
5.00	4.30 4.00 2.75 0.35 0.07*	35.4 39.9 51.8 51.8 51.8	108 121 158 158 158	220 248 322 322 322	363 408 530 530 530	553 623 808 808 808	799 900 1168 1168 1168	1374 1547 2007 2007 2007	NA 2347 3219 3219 3219	NA 2388 4015 4015 4015	NA 2978 7196 7196 7196	NA 5338 10415 10415 NA	NA 7727 14834 14834 NA
10.00	9.00 5.50 1.20 0.35	56.7 95.4 95.4 95.4	172 291 291 291	352 593 593 593	580 977 977 977	884 1489 1489 1489	1279 2152 2152 2152 2152	2198 3699 3699 3699	3024 5932 5932 5932 5932	3771 7398 7398 7398 7398	6759 13260 13260 13260	9783 19193 19193 NA	13934 27335 27335 NA
15.00	14.00 12.00 8.25 2.90 0.80*	67.9 108 139 139 139	207 330 423 423 423	422 673 862 862 862	695 1109 1420 1420 1420	1059 1690 2164 2164 2164	1531 2443 3128 3128 3128 3128	2633 4199 5377 5377 5377	3216 6629 8624 8624 8624	4011 8267 10755 10755 10755	7190 14819 19277 19277 19277	NA 21448 27901 27901 NA	NA 30548 39739 39739 NA
20.00	19.00 12.00 11.00 4.60 3.10 1.28	78.3 177 181 181 181 181 181	238 539 552 552 552 552 552	487 1101 1126 1126 1126 1126 1126	802 1814 1855 1855 1855 1855	1222 2764 2827 2827 2827 2827 2827	1767 3995 4086 4086 4086 4086	3037 6868 7024 7024 7024 7024 7024	3360 11014 11265 11265 11265 NA	4190 13736 14048 14048 14048 NA	7511 24621 25180 25180 25180 NA	NA 35636 36445 36445 NA NA	NA 50755 51906 51906 NA NA
25.00	20.70 13.75 12.00 6.30 2.80	164 220 220 220 220 220	500 684 684 684 684	1020 1395 1395 1395 1395 1395	1680 2297 2297 2297 2297 2297	2560 3500 3500 3500 3500	3700 5059 5059 5059 5059 5059	6359 8696 8696 8696 8696	9717 13946 13946 13946 NA	12118 17392 17392 17392 NA	21720 31174 31174 31174 NA	NA 45120 45120 45120 NA	NA 64261 64261 64261 NA
30.00	20.70 16.50 12.00 8.00 6.90 4.60	243 268 268 268 268 268 268	743 817 817 817 817 817 817	1516 1667 1667 1667 1667 1667	2497 2746 2746 2746 2746 2746 2746	3805 4184 4184 4184 4184 4184 4184	5500 6047 6047 6047 6047 6047	9454 10395 10395 10395 10395 10395	15162 16671 16671 16671 16671 NA	18908 20789 20789 20789 20789 20789 NA	33891 37264 37264 37264 37264 37264 NA	NA NA 53934 53934 NA NA	NA NA 76816 76816 NA NA
35.00	20.70 19.25 12.00 9.60 7.50 6.20	305 309 309 309 309 309 309	930 943 943 943 943 943 943	1898 1923 1923 1923 1923 1923	3126 3168 3168 3168 3168 3168 3168	4763 4827 4827 4827 4827 4827	6884 6977 6977 6977 6977 6977	11834 11993 11993 11993 11993 11993	18979 19234 19234 19234 19234 19234 NA	23668 23986 23986 23986 23986 NA	42425 42993 42993 42993 42993 42993 NA	NA NA 62227 62227 NA NA	NA NA 88627 88627 NA NA
40.00	20.70 12.00 10.30 8.07 6.20	353 353 353 353 353 353	1074 1074 1074 1074 1074	2195 2195 2195 2195 2195 2195	3615 3615 3615 3615 3615 3615	5508 5508 5508 5508 5508 5508	7961 7961 7961 7961 7961	13684 13684 13684 13684 13684	21945 21945 21945 21945 21945 NA	27367 27367 27367 27367 27367 NA	49055 49055 49055 49055 NA	NA 71000 71000 NA NA	NA 101121 101121 NA NA
42.00	20.70 12.00 10.30 8.30 6.20	369 369 369 369 369	1125 1125 1125 1125 1125 1125	2295 2295 2295 2295 2295 2295	3780 3780 3780 3780 3780 3780	5760 5760 5760 5760 5760	8325 8325 8325 8325 8325 8325	14310 14310 14310 14310 14310 14310	22950 22950 22950 22950 22950 NA	28619 28619 28619 28619 28619 NA	51299 51299 51299 51299 51299 NA	NA 74249 74249 NA NA	NA 105748 105748 NA NA

Useful Conversions $lbs/h = kg/h \times 2.2046$

* Low pressure top required for outlet pressures below 0.35 Barg
1. The Max. & Min. outlet pressure for a given inlet pressure and valve size, can be determined from the above table. E.g. a 100mm valve with an inlet pressure of 40 Barg has a maximum available outlet pressure of 20.7 Barg and a minimum of 8.07 Barg.
2. To ensure the above flows, it is critical the correct size of outlet pipe is used. See page 70.
2. For super head team the above canadities pred to be determined for a determined for the above flows.

3. For super heated steam the above capacities need to be derated. See page 40